
DATA TYPES AND EXPRESSIONS

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1

CS10003 PROGRAMMING AND DATA STRUCTURES

Data Types in C

int :: integer quantity

Typically occupies 4 bytes (32 bits) in memory.

char :: single character

Typically occupies 1 bye (8 bits) in memory.

float :: floating-point number (a number with a decimal

point)

Typically occupies 4 bytes (32 bits) in memory.

double :: double-precision floating-point number

Some of the basic data types can be
augmented by using certain data type
qualifiers:

• short

• long

• signed

• unsigned

Typical examples:

• short int

• long int

• unsigned int

Constants

Constants

Numeric

Constants

Character

Constants

stringsingle characterfloating-pointinteger

We have studied integer, floating-point, and single character constants in the introduction

Single Character and String Constants

SINGLE CHARACTER CONSTANTS

Contains a single character enclosed within a pair of

single quote marks.

• Examples :: ‘2’, ‘+’, ‘Z’

Some special backslash characters

‘\n’ new line

‘\t’ horizontal tab

‘\’’ single quote

‘\”’ double quote

‘\\’ backslash

‘\0’ null

STRING CONSTANTS

Sequence of characters enclosed in double quotes.

• The characters may be letters, numbers, special

characters and blank spaces.

Examples:

“nice”, “Good Morning”, “3+6”, “3”, “C”

Differences from character constants:

• ‘C’ and “C” are not equivalent.

• ‘C’ has an equivalent integer value while “C”

does not.

Variable values and variable addresses

In C terminology, in an expression

speed refers to the contents of the memory location.

&speed refers to the address of the memory location.

Examples:

printf (“%f %f %f”, speed, time, distance); /* We need only the values of the vars to print them */

scanf (“%f %f”, &speed, &time); /* We need the address of the vars to store the values read */

Assignment Statement

Used to assign values to variables, using the

assignment operator (=).

General syntax:

variable_name = expression;

Left of = is called l-value, must be a modifiable variable

Right of = is called r-value, can be any expression

Examples:

velocity = 20;

b = 15; temp = 12.5;

A = A + 10;

v = u + f * t;

s = u * t + 0.5 * f * t * t;

A value can be assigned to a variable at the time

the variable is declared.

int speed = 30;

char flag = ‘y’;

Several variables can be assigned the same value

using multiple assignment operators.

a = b = c = 5;

flag1 = flag2 = ‘y’;

speed = flow = 0.0;

Expression evaluation

7

An assignment expression evaluates to a value same as any other expression

Value of an assignment expression is the value assigned to the l-value

Example: value of

• a = 3 is 3

• b = 2*4 – 6 is 2

• n = 2*u + 3*v – w is whatever the arithmetic expression 2*u + 3*v – w evaluates to given the current values

stored in variables u, v, w

Consider a = b = c = 5

• Three assignment operators

• Rightmost assignment expression is c=5, evaluates to value 5

• Now you have a = b = 5

• Rightmost assignment expression is b=5, evaluates to value 5

• Now you have a = 5

• Evaluates to value 5

• So all three variables store 5, the final value the assignment expression evaluates to is 5

8

Types of l-value and r-value

• Usually should be the same

• If not, the type of the r-value will be internally converted to the type of the l-value, and then assigned to it

• Example:

double a;

a = 2*3;

• Type of r-value is int and the value is 6

• Type of l-value is double, so stores 6.0

int a;

a = 2*3.2;

• Type of r-value is float/double and the value is 6.4

• Type of l-value is int, so internally converted to 6

• So a stores 6, not the correct result

• But an int cannot store fractional part anyway, so just badly written program

• Be careful about the types on both sides

More Assignment Operators

9

+=, -=, *=, /=, %=

Operators for special type of assignments

a += b is the same as a = a + b

Same for -=, *=, /=, and %=

Exact same rules apply for multiple assignment operators

Suppose x and y are two integer variables, whose values

are 5 and 10 respectively.

x += y Stores 15 in x

Evaluates to 15

x –= y Stores -5 in x

Evaluates to -5

x *= y Stores 50 in x

Evaluates to 50

x /= y Stores 0 in x

Evaluates to 0

Operators in Expressions

Operators

Arithmetic

Operators

Relational

Operators

Logical

Operators

EXAMPLE: Suppose x and y are two integer

variables, whose values are 13 and 5 respectively.

Arithmetic Operators

Addition :: +

Subtraction :: –

Division :: /

Multiplication :: *

Modulus :: %

Examples:

distance = rate * time ;

netIncome = income - tax ;

speed = distance / time ;

area = PI * radius * radius;

y = a * x * x + b*x + c;

quotient = dividend / divisor;

remainder = dividend % divisor;

x + y 18

x – y 8

x * y 65

x / y 2

x % y 3

Operator Precedence

In decreasing order of priority

1. Parentheses :: ()

2. Unary minus :: –5

3. Multiplication, Division, and Modulus

4. Addition and Subtraction

For operators of the same priority, evaluation is from

left to right as they appear.

Parenthesis may be used to change the precedence of

operator evaluation.

EXAMPLES:

a + b * c – d / e ➔ a + (b * c) – (d / e)

a * – b + d % e – f ➔ a * (– b) + (d % e) – f

a – b + c + d ➔ (((a – b) + c) + d)

x * y * z ➔ ((x * y) * z)

a + b + c * d * e ➔ (a + b) + ((c * d) * e)

Integer, Real, and Mixed-mode Arithmetic

INTEGER ARITHMETIC

• When the operands in an

arithmetic expression are

integers, the expression is

called integer expression,

and the operation is called

integer arithmetic.

• Integer arithmetic always

yields integer values.

For example:

25 / 10 ➔ 2

REAL ARITHMETIC

• Arithmetic operations involving only

real or floating-point operands.

• Since floating-point values are

rounded to the number of significant

digits permissible, the final value is

an approximation of the final result.

1.0 / 3.0 * 3.0 will have the value

0.99999 and not 1.0

• The modulus operator cannot be used

with real operands.

MIXED-MODE ARITHMETIC

• When one of the operands is

integer and the other is real, the

expression is called a mixed-

mode arithmetic expression.

• If either operand is of the real

type, then only real arithmetic is

performed, and the result is a

real number.

25 / 10 ➔ 2

25 / 10.0 ➔ 2.5

Some more issues will be

considered later.

Similar code – different results !!

1
4

int a=10, b=4, c;

float x;

c = a / b;

x = a / b;

The value of c will be 2

The value of x will be 2.0

But we want 2.5 to be stored in x

15

Solution: Typecasting

• Changing the type of a variable during its use

• General form

(type_name) variable_name

• Example

x = ((float) a) / b;

• Now x will store 2.5 (type of a is considered to be

float for this operation only, now it is a mixed-

mode expression, so real values are generated)

int a=10, b=4, c;

float x;

c = a / b;

x = a / b;

16

Restrictions on typecasting

• Not everything can be typecast to anything

• float/double should not be typecast to int (as an int cannot store everything a float/double can store)

• int should not be typecast to char (same reason)

• General rule: make sure the final type can store any value of the initial type

Example: Finding Average of 2 Integers

1
7

int a, b;

float avg;

scanf(“%d%d”, &a, &b);

avg = (a + b)/2;

printf(“%f\n”, avg);

Wrong program !! Why?

int a, b;

float avg;

scanf(“%d%d”, &a, &b);

avg = ((float) (a + b))/2;

printf(“%f\n”, avg);

int a, b;

float avg;

scanf(“%d%d”, &a, &b);

avg = (a + b) / 2.0;

printf(“%f\n”, avg);

Correct programs

Relational Operators

Used to compare two quantities.

< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to

== is equal to

!= is not equal to

10 > 20 is false, so value is 0

25 < 35.5 is true, so value is non-zero

12 > (7 + 5) is false, so value is 0

32 != 21 is true, so value is non-zero

• When arithmetic expressions are used on either side

of a relational operator, the arithmetic expressions will

be evaluated first and then the results compared

a + b > c – d is the same as (a + b) > (c – d)

• Note: The value corresponding to true can be any non-

zero value, not necessarily 1

• Will print 1 in most cases, but should not assume it

will

Logical Operators

There are two logical operators in C (also

called logical connectives).

&& ➔ Logical AND

| | ➔ Logical OR

What they do?

• They act upon operands that are

themselves logical expressions.

• The individual logical expressions get

combined into more complex conditions

that are true or false.

• Logical AND

• Result is true if both the

operands are true.

• Logical OR

• Result is true if at least one of the

operands are true.

X Y X && Y X | | Y

FALSE FALSE FALSE FALSE

FALSE TRUE FALSE TRUE

TRUE FALSE FALSE TRUE

TRUE TRUE TRUE TRUE

20

Unary Negation

Unary negation operator (!)

• Single operand

• Value is 0 if operand is non-zero

• Value is 1 if operand is 0

21

Examples of Logical Expressions

(count <= 100)

((math+phys+chem)/3 >= 60)

((sex == ’M’) && (age >= 21))

((marks >= 80) && (marks < 90))

((balance > 5000) | | (no_of_trans > 25))

(! (grade == ’A’))

Suppose we wish to express that a should not have the value of 2 or 3. Does the following expression capture this

requirement?

((a != 2) || (a != 3))

22

A more non-trivial example:

a = 3 && (b = 4)

• b = 4 is an assignment expression, evaluates to 4

• && has higher precedence than =

• 3 && (b = 4) evaluates to true as both operands of && are non-0, so final value of

the logical expression is true

• a = 3 && (b = 4) is an assignment expression, evaluates to 1 (true)

Note that changing to b = 0 would have made the final value 0

Example: AND and OR

2
3

#include <stdio.h>

int main ()

{

int i, j;

scanf(“%d%d”,&i,&j);

printf (“%d AND %d = %d, %d OR %d=%d\n”, i, j, i&&j, i, j, i||j) ;

return 0;

}

3 0

3 AND 0 = 0, 3 OR 0 = 1

Output

Increment (++) and Decrement (--)

• Both of these are unary operators; they operate on a single operand.

• The increment operator causes its operand to be increased by 1.

• Example: a++, ++count

• The decrement operator causes its operand to be decreased by 1.

• Example: i--, --distance

Pre-increment versus post-increment

Operator written before the operand (++i, --i))

• Called pre-increment operator.

• Operator will be altered in value before it is

utilized for its intended purpose in the

program.

Operator written after the operand (i++, i--)

• Called post-increment operator.

• Operator will be altered in value after it is

utilized for its intended purpose in the

program.

EXAMPLES:

Initial values :: a = 10; b = 20;

x = 50 + ++a; a = 11, x = 61

x = 50 + a++; x = 60, a = 11

x = a++ + --b; b = 19, x = 29, a = 11

x = a++ – ++a; ??

Called side effects:: while calculating some values,

something else get changed.

2
6

Precedence among different operators

(there are many other operators in C,

some of which we will see later)

Operator Class Operators Associativity

Unary postfix++, -- Left to Right

Unary
prefix ++, --

─ ! &
Right to Left

Binary * / % Left to Right

Binary + ─ Left to Right

Binary < <= > >= Left to Right

Binary == != Left to Right

Binary && Left to Right

Binary || Left to Right

Assignment
= += ─ =

*= /= %=
Right to Left

Doing More Complex Mathematical Operations

2
7

• C provides some mathematical functions to use

• perform common mathematical calculations

• Must include a special header file

#include <math.h>

• Example

printf ("%f", sqrt(900.0));

• Calls function sqrt, which returns the square root of its argument

• Return values of math functions are of type double

• Arguments may be constants, variables, or expressions

• Similar to functions you have seen in school maths

Math Library Functions

2
8

double acos(double x) – Compute arc cosine of x.

double asin(double x) – Compute arc sine of x.

double atan(double x) – Compute arc tangent of x.

double atan2(double y, double x) – Compute arc tangent of y/x.

double cos(double x) – Compute cosine of angle in radians.

double cosh(double x) – Compute the hyperbolic cosine of x.

double sin(double x) – Compute sine of angle in radians.

double sinh(double x) – Compute the hyperbolic sine of x.

double tan(double x) – Compute tangent of angle in radians.

double tanh(double x) – Compute the hyperbolic tangent of x.

Math Library Functions

2
9

double ceil(double x) – Get smallest integral value that exceeds x.

double floor(double x) – Get largest integral value less than x.

double exp(double x) – Compute exponential of x.

double fabs (double x) – Compute absolute value of x.

double log(double x) – Compute log to the base e of x.

double log10 (double x) – Compute log to the base 10 of x.

double pow (double x, double y) – Compute x raised to the power y.

double sqrt(double x) – Compute the square root of x.

Computing distance between two points

3
0

#include <stdio.h>

#include <math.h>

int main()

{

int x1, y1, x2, y2;

double dist;

printf(“Enter coordinates of first point: “);

scanf(“%d%d”, &x1, &y1);

printf(“Enter coordinates of second point: “);

scanf(“%d%d”, &x2, &y2);

dist = sqrt(pow(x1 – x2, 2) + pow(y1 – y2, 2));

printf(“Distance = %lf\n”, dist);

return 0;

}

Enter coordinates of first point: 3 4

Enter coordinates of second point: 2 7

Distance = 3.162278

Output

Practice Problems

3
1

1. Read in three integers and print their average

2. Read in four integers a, b, c, d. Compute and print the value of the expression

a+b/c/d*10*5-b+20*d/c

• Explain to yourself the value printed based on precedence of operators taught

• Repeat by putting parenthesis around different parts (you choose) and first do by hand what should be printed, and

then run the program to verify if you got it right

• Repeat similar thing for the expression a&&b||c&&d>a||c<=b

3. Read in the coordinates (real numbers) of three points in 2-d plane, and print the area of the triangle formed by them

4. Read in the principal amount P, interest rate I, and number of years N, and print the compound interest (compounded

annually) earned by P after N years

